
: The Hückel Model and other Semiempirical Methods

1. Write the Secular determinant for the following molecules in terms of (i) α, β and E, (ii) $x=(\alpha-E) / \beta$

In molecules with heteroatoms, check PP slides for appropriate heteroatom parameters
(a) Square cyclobutadiene

(b) Trimethylenemethane

This is a diradical species.
I've drawn one of 3 resonance forms

(c) Acrolein

(d) Furan

2. How many electrons does the oxygen atom in (a) Acrolein, (b) Furan, contribute to the pi electron system.
3. Let's consider Cyclobutadiene:

In the solution to Prob. 1 (a), we showed that the secular determinant is:
$\left|\begin{array}{llll}x & 1 & 0 & 1 \\ 1 & x & 1 & 0 \\ 0 & 1 & x & 1 \\ 1 & 0 & 1 & x\end{array}\right|=0$
With a bit of algebra, it can be shown that the above determinant expands to give: $x^{4}-4 x^{2}=0$
(a) Solve this equation to obtain the 4 energy levels.

Note: Two of the four energies are degenerate.
(b) It can be shown (with a bit more algebra) that the non-normalized molecular orbitals of cyclobutadiene are:

$$
\begin{aligned}
& \phi_{1}=c_{1}\left(\chi_{1}+\chi_{2}+\chi_{3}+\chi_{4}\right) \\
& \phi_{2}=c_{1}\left(\chi_{1}-\chi_{3}\right) \\
& \phi_{3}=c_{2}\left(\chi_{2}-\chi_{4}\right) \\
& \phi_{4}=c_{1}\left(\chi_{1}-\chi_{2}+\chi_{3}-\chi_{4}\right)
\end{aligned}
$$

Determine the normalized molecular orbitals.
(c) Calculate the total π energy and the Delocalization energy.
(d) Calculate the π electron charge for each atom.
(e) Calculate the π bond order for each bond.
4. Consider 1,3-butadiene:

Note: The solution to this problem is given in the Chap. 12 PowerPoint presentation.
(a) Write the Secular Determinant.
(b) Solve the Secular Determinant to obtain the 4 energy levels.
(c) Determine the normalized coefficients of the molecular orbitals corresponding to each energy.
(d) Calculate the total π energy and the Delocalization energy.
(e) Calculate the π electron charge for each atom.
(f) Calculate the π bond order for each bond.
5. Consider butadiene in the lowest excited state (figure to right).

Note: The energies and orbitals are the same as in the ground state.
(a) Calculate the π electron charge on each atom.

